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analysis of the gain of rnagnetostatic amplifiers employing

a composite layered structure of semiconductors and

ferrites [12].
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Different Representations of Dyadic Green’s
Functions for a Rectangular Cavity

CHEN-TO T!d, FELLOW, IEEE, AND PAWEL kbzENFELD, MEMBER, IEEE

,4bstract-Several different but equivalent expressions of the dyadic

Green’s functions for .a rectangular cavity have been derived. The
mathematical relations between the dyadic Green’s function of the vector
potential type and that of the elechic type are shown in detail. This work
supplements the one by Morse and Feshbach [1].

I. INTRODUCTION

T HE dyadic Green’s function for a rectangular cavity

has previously been studied by Morse and Fesl-ibach

[I]. The function which they introduced is of the vector

potential type, hereby denoted by CA, corresponding to the

dyadic version of the vector Green’s functicm for the vector

Helmholtz equation. Two forms of. ~~ were obtained by

these authors. While one form is Complete$ the other one

is not. These authors mentioned that the two forms are

equivalent when a longitudinal part is added to the in-

complete form, but the exait relations were not ,discussed.

In a recent paper, Rahmat-Samii [7] presented the dyadic

Green’s function of the electric type for rectangular wave-
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guides and cavities, and introduced an auxiliary dyadic g~.

This dyadic, however, is the dyadic Green’s function of the

vector potential type GA, as can easily be seen by coxhparing

(1] in the present work with [7, eq. (9)]. As a result; [7, eq.

(26)] for ~~ is the same as our expression {1,0). The rep-

resentation of the dyadic Green~s functions for rectangular

waveguides which ,is given in Rahmat-Samii’s paper has

previously been presented in [3] and for rectan@lar

cavities in [6].

In this paper, we give, a detailed derivation of several

alternative representations of the dyadic Green’s functions

of both the vector potential type and the electric type for a

rectangular cavity. Although the two types of functions are

intimately related, it is more direct to use the function of the

electric type that would bypass the tedious differentiation

of discontinuous series for the evaluation of the fields in a

source region.

IL DYADIC GREEN’S FUNCTIONS OF THE VPCTOR
POTENTIAL TYPE AND OF THE ELECTRIC TWE

The classification of dyadic Green’s functions of various

types and kinds has previously been discussed [2], [3].

For the present work, it is sufficient to review two types of

functions pertaining, respectively, to the vector potential

function and the electric field. The dyadic Green’s function



598 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TSCHNIQUSS, SEPTEMBER 1976

of the vector potential type satisfies the differential equation

V2~* + k2~A = – 18(~ – ~’) (1)

where

k=

z
@ – R’)

= iD=/!Lo&o;
the idem factor = M + j~ + 22;

the three-dimensional $-function = @ -

X’)d(y - y’)qz - z’).

A cap is used here to denote a unit vector. The dyadic

Green’s function of the electric type satisfies the differential

equation

vxvx Ge “-- k2G@= Zd(l? - F). (2)

The relation between ~~ and ~. is

(3)

For cavities we are seeking the kind of functions which

satisfy the boundary condition

fixae=o (4)

or

‘X(’+$vv)”c’=o(5)

Previously, we called these kinds of functions the functions

of the first kind and denoted them, respectively, by Gel

and ~’~. For the present work we shall omit the subscript 1

for convenience. Later on we shall mention briefly the

characteristics of the function of the second kind.

III. EIGENFUNCTION EXPANSION OF CA

FOR A tiCTANGULAR CAVITY

The rectangular cavity under consideration

configuration shown in Fig. 1.

has the

Following the Ohm-Rayleigh method [2], [3] we expand

first the singular function 16(R – R’) in terms of the vector

wave functions Zoo, ~.o, and No. defined as follows:

Loo = V’*OO (6)

meo = v x (l#e#) (7)

Roe = + v x v x (*oe2) (8)

where

tiOO = sin k~ sin kvy sin kzz

IJ,O = cos kxx cos k,y sin k=z

$.. = sin kXx sin kYy cos kZz

Fig. 1. A rectangular cavity and the designation of the coordinate
system.

As a result of the orthogonal properties of these vector

wave functions, we find

16(R – R’)

= ,;n cm” [~ ZOOLO; 1+meomeo’+NOJ70:(9)
,,

where the primed functions are defined with respect to the

primed variables x’, y’, and z’ pertaining to R’ and

Cmn = 4@-ky

‘:=H’+k)’
[

60=; lortnorti=O

Y l,m, n+fl.

The constant kCcorresponds to the cutoff wave number of a

rectangular waveguide with a cross section a, x b. The

derivation of (9) follows the same steps as described in

[2] and [3]. In view of (1), we find

[

.’ 2-- 1-&LOOLOO’+ R,OR,O’ + ~oe~oe’ . (10)

The series containing the LOOZOO’“terms is responsible

not only for the field in a source region but also contributes

to the electric field in a source-free region as will be shown

subsequently. The expression for GA as given by (10) can

be written in a different form using the modal functions

commonly used in waveguide theory, particularly by

Felsen and Marcuvitz [4] and their followers. These modal

functions have also been used by Morse and Feshbach.

They are defined by

70 = $& (11)

iii= = Vtq)e x 2 (12)

Fio = Vtfpo (13)

where

do = sin k.x sin k,y

~e = COS k~ COS k,y
m,n,l = 0,1,2,”””

K= s kX2 -I- kY2 + kz2.
k, = ~, k, = ~, m,n = 0,1,”””.

a
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The vector wave functions which we used in expanding GA

are related to these modal functions, Thus it is not difficult

to show

ZOO = ii. sin kzz + kzlo cos kzz

~,. = iii= sin kZz

NO= = ~ (–kziio sin kZz + kcz~, cos kZz),

In terms of ~0, Eie, and iiO, we can write (10) in the form

CA = ,;n ~2cmn ~2 [k:lolo’ COS kzz COS k,z’
—,,

+ (E@i; + iiOtiO’) sin k=z sin kzz’]. (14)

Now the sum over the index I can be evaluated in a

closed form by making use of the relations [5]

-z 1 sin kZz sin k,z’
Z.1K2 — k2

c (sin kg(c – z) sin kgz’

= 2k, sin kgc sin kgz sin kg(c – z’) 1
z ~ z’ (15)

21 COSkzz COS kZz’
1=0 K2 — k2

–c (COSk&c – Z) COS kgz’.
2kg sin k~c cos kgz cos kg(c – z’) }

Z < Z’ (16)

where

kg = (k2 – kc2)112.

An equivalent expression for (14) is therefore given by

GA = ~ C~n*[kC21010’g~n+ (z,R; + iiofio’)f~.] (17)
m~n

where

Cmn” =

f.. =

9.. =

2(2 – do)

abkC2k~sin koc
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that must be executed with due care. For this reason, it

appears more appealing to deal with de, the dyadic Green’s

function of the electric type. Once G= is known one can

find E by applying the formula

.—
E(R) = kqfo MG,(i? I R’) “ 7(R) (iv’

-#
v’ x Q(R’ I R) ‘ [fi x E(R)] ds’ (20)

where the sign N over V’ x G, denotes the transposition

of the entire dyadic function. In fact, it is known [2], [3]

that

v’ x Gel(R’ I R) = v x ce2(R I F) (21)

where ~e2 denotes the dyadic Green’s function of the

second kind of the electric type which satisfies the same

equation as Gel, the first kind or simply G= in our present

designation, but with the boundary condition

f?xvx Ge2=o.

A more precisely annotated expression for

should be

E(R) = impo
J!l

G=I(R I R’) . 7(R’) dv’

PP

(20), therefore,

— 4+V X ~e2(~ I ~’) o [f? X Z(R’)] ds’. (22)
JJ

Because of the convenience of using C, instead of CA,

it is desirable to give a detailed derivation of the several

alternative representations of G=, which is understood to be

G,l in this paper.

IV. EIGENFUNCTION EXPANSION OF ~,

FOR A RECTANGULAR CAVITY

By applying the Ohm–Rayleigh method to the equation

for G= defined by (2) or by substituting (lOj into (3), one

finds

(sin kg(c – z) sin kgz’

)
z~z’ (18) _

sin kgz sin kg(c – z’) G, = ~ C..
[ ~2 : k, (m=omeo’ + ~o,~l)e’)

l,m,n

(COSkg(c -- Z) COS kgz’

}
z ~ z’. (19)

COS kgz CC)S kg(c – Z’)

Equation (17) is the same as the one previously given by

Morse and Feshbach [1, eq. 13.3:47] based on the method

of scattering superposition starting with dyadic Green’s

function for GA pertaining to a rectangular wavegtiide.

In principle, once GA is known one can find the vector

potential function X for any arbitrary current source,

including source of the aperture type, as shown by Morse

and Feshbach. To find E, the electric field, another dif-

ferential operation is needed as

(E=iOZ+J-
)

VV” A .
k2

If we use (17) for GA, then the differential operation involves
a series with a discontinuous derivative in the source region

kc2 - -
——

k2K 2 ~oo~oo’ 1(23)

where Cm., Fl,o, No,, and Loo have been defined before.

It is observed that the coefficient attached to the ~oo~oo’

terms is different from the one associated with GA, while

the coefficient attached to the ~eo~.o’ and ~o,~o=’

terms remains unchanged. This is because

V“neo=o

v“Noe=o

Vv “ zoo = –K2E00

and

“ (’-$)=-i%(K2 – k2\K2\—— /
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In terms of the modal functions 7., fia, and fiO as defined

by (1 1)-(13), one can write (23) in the form

-1-

+

+

k2
~ Eofio’ sm z“ k z sin kzz’
k2

kC2(k2 - kzz)
1.70’ COSkzz COSkZz’

kz

k,kcz
~ (lOiiO’ cos kzz sin k,z’

1F@o’sin kZz cos kzz’) . (24)

Now the series containing the 1.70’ terms has a singular

term which can be extracted from the sum. Using (19),

one finds that

azgmn
— = - k~2g.. - kg sin k~c8(z - z’).
az2

(25)

The singular term involving 6(z – z’) results from the

discontinuity of 8g~./8z. In view of (16) and (19) we have

kzz COS kzz COS kZz’
-,;l K2 _ kz

az
x

COS kzz COS kzz’=—
8z2 z=o K2 - k2

c a2gm

= 2k~ sin k~c i?zz

= –;a(z–z’)– “c
2 sm k~c

9mn

=-; a(z-z’)-~
k,2

COS kzz COS kzz’.
l=o K2 — k2

Thus (24) can be written in the form

& = -g cm.(:)2;6(2 - 2’)7010’

+ ,;n K2C: k2
[

Eeiiie’ sin k=z sin k=z’
,,

+k2 __,. . ,

$ nono ‘ln “z ‘]n “z
\

k4
+ $7.10’ COS kzz COS kzz’

kzkC2
- ~ (70 iio’ cos kzz sin kzz’

because

6(R – R) = 6(X – X’)a(y – y’)a(z – z’)

(27)

where @o = sin k.x sin kYy. The triple series can be

summed over 1 using (15) and (16) and the additional

relations

z k= sin kzz cos kZz’ = -c 89mn
K2 – k2 2kg sin k~c %_

(28)
1=1

z k= cos kzz sin kzz’ c af~n
K2 – kz = 2kg sin k~c %”

(29)
1=1

The final expression for ~. after this reduction has the form

c. = – -+226(R – R’)

[
+ ~ C..* (fiefie’ + # k)EO’)fnm

m,n

+k4 a9mn
-fj ~070’9m” + * fio70’ ~ 1k2 -,afn– * lono~

(30)

where

cm: = 2(2 - do)

abkc2kg sin k~c”

The function~~n and g~. are defined by (18) and (19).

It should be remarked that an alternative procedure to

obtain (30) is to use the formula

‘e=(’+$vv)”G’
with GA given by (17). If this procedure is followed the

following relations are needed:

v “ (mefm”)= o

V “ (iiofmn)= – kc2#ofmn

( afmnVv “ (iiofmn)= – kC2 Fiofmn+ 10~
)

a9mn azgmn
W“(logmn)=fio =+lo=.

1+iio70’sin kZz cos kzz’) .

The double series in (26) is recognized as

(26) From the point of view of waveguide theory, a rectangular

cavity can be considered as a waveguide terminated by two

conducting walls at the ends. For this reason, it is desirable

to identify the significance of (30) based on this approach.

It is recalled [3] that the complete expression of the

dvadic Green’s function of the electric tv~e for an infinite
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rectangular waveguide is given by

where

~(k~) = V x [@oeik”z2]

N(k,) = ~ V x V x [@,eik’z2]

z~z’

(31)

k,2 = kz -- kC2

kC2 = kx2 -I- kY2

& = sin kxx sin k, y

~= = COS /CxX COS kyy,

It should be noted that the term - [226(R - R’)]/k2 was
missing in the old treatment as found in [2], but amended

in [3].

For the cavity, we construct G. by the method of scatter-

ing superposition. Thus we let

+ N(kg)& + IV(– kg)EJ (32)

where the scattering terms represent the reflected TE and

TM modes from the two end walls, After applying the

boundary condition 2 x ~. = O at z = O and z = c we

can determine the unknown coefficients %s and B’s. The

final result is given by

21=+- sin kg(c – z’)iiie’
sin kgc

22.3 eikgcsin k~z’ Ee’
sin kgc

El = –1
k sin kgc

“ [kg sin k,(c – Z’]fio’ + kC2 COS k~(C – Z’)lo’]

B2 = k ~~~ c [– kg sin kgz’fio’ + kC2cos k#o]
9

where R=, iio, and 70 denote the modal functions defined

previously by (11)-(13). By summing all the parts in (32)

it can be shown that the result is identical to (30) as it

should be. Furthermore, if we introduce the vector wave

functions defined by

~.o[kgz] =

li?.o[kg(c – z)] =

No.[kgz] =

No,[kg(c – z)] =

V x [~. sin kgz.f?]

V x [~. sin kg(c - z)2]

; V X V X [d. COSkgz.f?]

; V X V X [#. COSkg(c – z)~].

Then (30) can be written in the following compact form:

Q = - ‘96(R–“)
k2

(~eo[kg(c – z)]~eo’[kgz’]
+ ~n cmn* T7,0[kgz]17,0’[kg(c -, z’)]

I

– No,[ko(c – .Z)]~oe’[k#l z ~ ~1
(33)

– ~oe[k~z]~oe’[kg(c – z’)] -

where

In summary, we have derived three different but equiv-

alent representations of G. for a rectangular cavity stated

by (23), (30), and (33). The functions for cylindrical and

spherical cavities in the triple sum form are also available

[6]. For cylindrical cavities it is possible to reduce the triple

sum into a double sum. This is, however, not possible for

spherical cavities.
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