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analysis of the gain of magnetostatic amplifiers employing
a composite layered structure of semiconductors and
ferrites [12].
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Different Representations of Dyadic Green’s
Functions for a Rectangular Cav1ty

CHEN-TO TAI, FELLOW, IEEE, AND PAWEL ROZENFELD, MEMBER, IEEE

Abstract—Several different but equivalent expressions of the dyadic
Green’s functions for .a rectangular cavity have been derived. The
mathematical relations between the dyadlc Green’s function of the vector
potential type and that of the electric type are shown in detail. This work
supplements the oné by Morse and Feshbach {1].

1. INTRODUCTION

HE dyadic Green’s function for a rectangular cavity

has previously been studied by Morse and Feslibach

[1]. The function which they introduced is of the vector
potential type, hereby denoted by G ,, corresponding to the
dyadic version of the vector Green’s function for the vector
Helmholtz equation. Two forms of. G, were obtained by
these authors. While one form is complete, the other one
is not. These authors mentioned that the two forms are
equivalent when a longitudinal part is added to the in-
completed form, but the exact relations were not discussed.
In 4 recent paper, Rahmat-Samii [7] presented the dyadic
Green’s function of the electric type for rectangular wave-
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guides and cavities, and introduced an auxiliary dyadic g,,.
This dyadic, however, is the dyadic Green’s function of the
vector potent1al type G 4, as can easily be seen by comparmg
(1) in the present work with [7, eq. (9)]. As a result, [7, eq.
(26)] fot g,, is the same as our expression (10) The rep-
resentation of the dyadic Green s functions for rectangular
waveguides which is given in Rahmat-Samii’s paper has
previously been presented in [3] and for rectangular
cavities in [6].

In this paper, we give a detalled derxvauon of several
alternative representations of the dyadic Green’s functions
of both the vector potential type and the electric type for a
rectangular cavity. Although the two types of functions are
intimately related, it is more direct to use the function of the
electric type that would bypass the tedious differentiation
of discontinuous series for the evaluation of the fields in a
source region.

I1: DyADIC GREEN’S FUNCTIONS OF THE VECTOR
PotenTIAL TYPE AND OF THE ELECTRIC TYPE

. The ¢lassification of dyadic Green’s functions of various
types and kinds has previously been discussed [2], [3].
For the present work, it is sufficient to review two types of
functions pertaining, respectively, to the vector potential
furniction and the electric field. The dyadic Green’s function
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of the vector potential type satisfies the differential equation

V¥%G, + k*G, = —I5(R — R) 6))
where '
K = 0?floso;
I ~ the idem factor = £% + 99 + 22;
(R — R") the three-dimensional d-function = &(x —

xYo(y — )z = 2).

A cap is used here to denote a unit vector. The dyadic
Green’s function of the electric type satisfies the differential
equation

V xV x G, - k*G, = I6(R - R). V)

The relation between G, and G, is

— "1 —
G, = (I + e VV) c Gy 3
For cavities we are seeking the kind of functions which
satisfy the boundary condition

AxG, =0 @

er
ﬁx(z+£ivv)-64=o. )
Previously, we called these kinds of functions the functions
of the first kind and denoted them, respectively, by G,
and G ,. For the present work we shall omit the subscript 1

for convenience. Later on we shall mention briefly the
characteristics of the function of the second kind.

1. EIGENFUNCTiON EXPANSION OF G 4
FOR A RECTANGULAR CAVITY

The rectangular cavity under consideration has the
configuration shown in Fig. 1.

Following the Ohm-Rayleigh method [2], [3] we expand
first the singular furiction I8§(R — R’) in terms of the vector
wave functions Lyq, M,,, and N, defined as follows:

Loo = Voo (6)
My =V x (Yeo?) 0)
Noo = 2V % V X (o2 ®
where
Voo = sih kx sin k,y sin &,z
V.o = cos k,x cos k,y sin k,z
Yoe = sin k.x sin k,y cos k,z
k=" g, ="F, ="
a b ¢

mmnl = 0,1,2,---

K? = k2 + k2 + k2

Fig. 1.
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A rectangular cavity and the designation of the coordinate
system.

o

As a result of the orthogonal properties of these vector
wave functions, we find

IR - R)

kcz Ty T AT X7 !/ A _ !
- ¥ Cn [F LooLos + MoM,o + NOeNOE] ©

I,m,n

where the primed functions are defined with respect to the
primed variables x’, y’, and z’ pertaining to R’ and

_ 42 = 89
i abck?

o= )
¢ a b

1,
50 = [0

The constant k, corresponds to the cutoff wave number of a
rectangular waveguide with a cross section a x b. The
derivation of (9) follows the same steps as described in
[2] and [3]. In view of (1), we find

ral Cmn

O = z,;,nKl — K2

lormorn =0
I,m,n # 0.

kc2 i A AF A/ N ON
[E; LooLoo' + MMy + NOeNOe]° (10)

The series containing the LyoLyo" terms is responsible
not only for the field in a source region but also contributes
to the electric field in a source-free reégion as will be shown
subsequently. The expression for G, as given by (10) can
be written in a different form using the modal functions
commonly used in waveguide theory, particularly by
Felsen and Marcuvitz [4] and their followers. These modal
functions have also been used by Morse and Feshbach.
They are defined by

Iy = ¢o? an
i, =V, X & (12)
. g = Vo 13)
where
¢o = sink.xsin k,y
¢, = cos k,x cos k,y
k=22, k=2, mn=0l
a b



TAI AND ROSENFELD: DYADIC GREEN’S FUNCTIONS

The vector wave functions which we used in expanding G,
are related to these modal functions. Thus it is not difficult
to show

Loy = Ay sin k,z + k,ly cos k,z
—20 = m in kzZ
N0e=ll<( —k,fig sin k,z + k1, cos k,2).

In terms of I, ,, and 7i,, we can write (10) in the form

- Coun
G, = — ~mm
4 l;n KZ - kl
+ (m.m, + Fgfiy’) sin k,z sin k2], (14)

[k 21oly" cos k,z cos k,z’

Now the sum over the index / can be evaluated in a
closed form by making use of the relations [5]

> sin k,z sin k,z’
=1 K2 — k?

c {smk(c—z)smkz}z>z, (15)
2k sin ke \sin k,z sin k(¢ — 2) < .
~ m CoS kzZ COSs k,_,Z,
—c {cos kg(c—z)coskz}z> 2 (16)
2k sin k,c \cos kyz cos k(c — z') <
where
- (kz - kc2)1/2‘

An equivalent expression for (14) is therefore given by

GA = Z Cmn*[kaTOYOIgmn + (Fﬁeﬁie’ + ﬁoﬁo’)fmn] (17)

where
Cor o 20=8)
™ abkk, sin ke
sin k(¢ — z) sin kgz’} >

mn = . . 1z Z 18

’ {sm k,z sin k(c — 2') < (18)

_ {cos k,(c ~ z) cos kgz’} > 5 (19)

™ cos k,z cos k(c — z') '

Equation (17) is the same as the one previously given by
Morse and Feshbach [1, eq. 13.3:47] based on the method
of scattering superposition starting with dyadic Green’s
function for G, pertaining to a rectangular waveguide.

In principle, once G, is known one can find the vector
potential function 4 for any arbitrary current source,
including source of the aperture type, as shown by Morse
and Feshbach. To find E, the electric field, another dif-
ferential operation is needed as

E= iw(Z+kl2VV°Z).

If we use (17) for G, then the differential operation involves
a series with a discontinuous derivative in the source region
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that must be executed with due care. For this reason, it
appears more appealing to deal with G,, the dyadic Green’s
function of the electric type. Once G, /is known one can
find E by applying the formula

E(R) = ioouq f f f G.(R | R)- J(R) dv’

- # V' x G(R'|R)-[# x ER)]ds (20)

' where the sign ~ over V' x G, denotes the transposition

of the entire dyadic function. In fact, it is known [2], [3]

V' x G,,(R'|R) = (21)
where G., denotes the dyadic Green’s function of the
second kind of the electric type which satisfies the same
equation as G,,, the first kind or simply G, in our present
designation, but with the boundary condition

ixVxG@G,=0.

G(R|R)

A more precisely annotated expresswn for (20), therefore,
should be

E(R) = ioop, f f f G.(RIR)-J(R) dv'
- fh@ V x Gu(R|R)-[4 x ERY]ds. (2)

Because of the convenience of using G, instead of G,
it is desirable to give a detailed derivation of the several
alternative representations of G,, which is understood to be
G., in this paper.

IV, EIGENFUNCTION EXPANSION OF G,
FOR A RECTANGULAR CAvITY

By applying the Ohm-Rayleigh method to the equation
for G, defined’ by (2) or by substituting (10) into (3), one
finds
— 1 —_ —
Ge= Cmn——'—'—MeMe'+NeNe’

l,fn:n [K z - kz( 0 0 070 )
‘, k.2
 KK?

LyoLoo’ ] (23)

where C,,., M,o, No., and Ly, have been defined before.
It is observed that the coefficient attached to the LyoLoo’
terms is different from the one associated with G,, while
the coefficient attached to the M, M,,’ and N,.N,,
terms remains unchanged. This is because

V-M,=0
V- Ny =0
VV - Lyo = —K%Ly,
and
k2 (1_51)=_ ke
(K? — K)K? k? k2K?
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In terms of the modal functions 1,, ,, and 7, as defined
by (11)~(13), one can write (23) in the form

G, = IE" %3 [meme' sin k,z sin k,z’

k 2
g = =) : ’
+ P figfiy' sin k,z sin k,z

202 _ 1 2
- ﬂ_k_kz_kz_z 1olo’ cos k,z cos k,z’'

kkz (loity’ cos k,z sin k,z’

+ figly’ sin k,z cos k,z’)] . (24)

Now the series containing the 1,],’ terms has a singular
term which can be extracted from the sum. Using (19),
one finds that

A2
C"Gmn

e 25

— kg, sin k,cd(z — 2°).

2
g Imn

The singular term involving d(z — z’) results from the
discontinuity of dg,,,/0z. In view of (16) and (19) we have

k.2 cos k,z cos k,z'

=1 K? — k?
0? cos k,z cos k,z’
T ___E 2 _ 12
c 0%

- 2k, sin k,c 0z*

ke
= ——52— N - 2
( 7) 251nkc
2
= -gé(z -2z) - lgoﬁk—g_—,?cos k.z cos k,z'.

Thus (24) can be written in the form
- kN2 c N 7 .
G.= =% Cm (E) € oz ~ oo

+ Z Cmn

——m _ |'m,m, sin k,z sin k2’
Im,n K2 bl k2 [ i i

2
+ -I;_z figfig” sin k,z sin k, z’
k 4
’ ’
+ k—°2 1,1, cos k,z cos k,z

kK.

iy’ cos k,z sin k,z’

+ figly sin k,z cos k,z’)] . (26)

The double series in (26) is recognized as

1 b3 R
— 3 226(R — K
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because

SR — R) = 8(x — x)o(y — ¥)o(z — 2)

4
=Yy - '(z — 2’ 27
’E 2b ¢0¢0, (z - 2) 27
where ¢, = sin k,x sin k,y. The triple series can be

summed over / using (15) and (16) and the additional
relations

k. sin k,z cos k,z' _ ¢ G (28)
=1 K? — k? 2k, sin k,c 0z ‘

k, cos k,z sin k,z’ c U mn (29)
151 K2 — k2 2k, sin k,c 0z ’

The final expression for G, after this reduction has the form

1 D D’
6= ;2R - )
k2 ‘
+ 2 Cmn* l:(m 771. "+ 'ic'— nOnO )fmn
kc4 ! ! 6gm” kcz = afmn
+ -k—27070 gmn kz n 7 7z - —1-6—2— Zono az]
(30)
where
2(2 — do)

C,t = ——— 0,
abk 2k, sin k,c

The function f,,, and g,,, are defined by (18) and (19).
It should be remarked that an alternative procedure to
obtain (30) is to use the formula

— 1 —
G, = (I+PVV)-GA:

with G, given by (17). If this procedure is followed the
following relations are needed:

V : (mefmn) = 0

\A (ﬁofmn) = —kc2¢0fmn
0 mn
V : (7Ogmn) = ¢0 g
z
VV . (ﬁofmn) = _kcz (ﬁofmn + 70 afmn)
0z
VW = OGmn O’ Gmn
* (-logmn) = ho 6z + 70 azz .

From the point of view of waveguide theory, a rectangular
cavity can be considered as a waveguide terminated by two
conducting walls at the ends. For this reason, it is desirable
to identify the significance of (30) based on this approach.

It is recalled [3] that the complete expression of the
dyadic Green’s function of the electric type for an infinite
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rectangular waveguide is given by
2 )
G=—-—25R-R)+ 1-(———-—
k 2R -R)+ L %,
[M(+k)M'(Fk) + N(xk)N'(Fk)]l, z22

€2y

where
M (k) =V x [¢oe"‘922]

N(k )——VxVx [¢.e*e*5]

kg2 = kz - kcz
k= k2 + k}?
¢o = sin k,x sin k, y

.

It should be noted that the term —[226(R — R’)]/k? was
missing in the old treatment as found in [2], but amended
in [3].

For the cavity, we construct G, by the method of scatter-
ing superposition. Thus we let

i(2 — &p)
abk, 2k

cos k.x cos k,y.

G, = G+ L= (M)A, + (- k),

+ N(k;)B, + N(—k)B,] (32)

where the scattering terms represent the reflected TE and
TM modes from the two end walls. After applying the
boundary condition 2 x G, =0at z =0 and z = ¢ we
can determine the unknown coeflicients A’s and B’s. The
final result is given by

A = sin k(¢ — z)m,’
Y sin ke o ),
A, = e sin k ',
7 sin ko ¢
B =
k sin k,c
<[k, sin k,(c — 2Ry’ + k2 cos k,(c — z')]y']
B, = —19 [k sin kg + k2 cos k2]
=— [~k sin k,z'n cos k,z
27 ksin kye g o= 70 € =0

where m,, H,, and I, denote the modal functions defined
previously by (11)—~(13). By summing all the parts in (32)
it can be shown that the result is identical to (30) as it
should be. Furthermore, if we introduce the vector wave
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functions defined by
M[k,z] = V x [¢, sin k,z£]
M[kc = 2)] =V x [¢, sin k,(c — 2)£]

Noofk,2] = iV x V x [¢g cos k,z£]

Nodk,(c — 2)] = iv X V % [ cos ke — 2)2].

Then (30) can be written in the following campact form:
G, = _£25(R = R’)
k2
M, [k,(c — 2)]M.ok,2']
+ Cmn* {_eo g\ - e0 g’
2 O \ Mooz Thfe ~ 2]

— No[k,(c — 2)]N,, Lk,z ]}

— NolkNo ke — 2] 227 G

where
2(2 — 8y)

Co® = ————.
abk 2k, sin k,c

In summary, we have derived three different but equiv-
alent representations of G, for a rectangular cavity stated
by (23), (30), and (33). The functions for cylindrical and
spherical cavities in the triple sum form are also available
[6]. For cylindrical cavities it is possible to reduce the triple
sum into a double sum. This is, however, not possible for
spherical cavities.
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